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Representations of Intervals and Optimal 
Error Bounds* 

By L. B. Rail 

Abstract. Classical methods of numerical analysis lead to approximate values and error 
bounds for computed results, while interval analysis provides lower and upper bounds for the 
exact values. Equivalence of these approaches is investigated on the basis of a general 
definition of an error function, and a way is given to find optimal approximation points y* in 
an interval I and the corresponding minimum error bound e*. Conversely, it is shown that 

v * e can be used as alternative coordinates for the representation of the interval I, and the 
rules for interval arithmetic can be formulated in the resulting system. In particular, the 
arithmetic, harmonic, and geometric means of the endpoints of an interval turn out to be the 
optimal approximation points corresponding to absolute error, relative error, and relative 
precision, respectively. The rules for interval arithmetic are given explicitly in the resulting 
coordinate systems. It is also shown that calculations performed in interval arithmetic 
generally lead to smaller intervals than predicted by certain a priori bounds. 

1. Intervals and Error Bounds. Since real transformations y = f(x) cannot be 
evaluated exactly in general, a central problem of numerical analysis is to find 
reliable approximations y* to y. In classical numerical analysis, the reliability of y* is 
determined on the basis of an error bound e* relative to some measure of error, a 
concept which will be formulated precisely below. The more recently developed 
methods of interval analysis [2], [3], approach this problem in the following way: It 
is assumed that x E J, a possibly degenerate interval, and one computes I = F( J) 
using an interval operator F which includes f on J in the sense that 

(1.1) f(J) = {yj y = f(x),x E J} C F(J). 

Thus, y E I for the exact value y = f(x), so that, for 

(1.2) a i(I) = inf{x I x E} I, b = s(I) = sup{x I x E I}, 

one has 

(1.3) a < y < b, 

which gives lower and upper bounds for the value sought. 
The equivalence of the results of these approaches is evident: Given (1.3), it is 

usually easy to compute an approximate value y* and an upper bound E* for its 
possible error; examples will be given below. Similarly, given y*, E*, then it is 
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conversely possible to assert that the exact value y lies in some interval I. Calcula- 
tions in interval analysis are based ultimately (but not completely) on interval 
arithmetic [2], [3], which is usually expressed in the standard format I = [a, b], 
J = [c, d] for intervals according to (1.2). The rules are: 

(i) Addition 

(1.4) I + J = [a, b] + [c, d] [a + b, c + d]. 

(ii) Subtraction 

(1.5) I-J [a, b] - [c, d] [a-d, b-c]. 

(iii) Multiplication 

(1.6) I * J = [a, b] *[c,d] [min{ac, ad, bc, bd}, max{ac, ad, bc, bd}]. 

(iv) Reciprocation for intervals J such that 0 a J, 

(1.7) J-1 = [d-1,c-1] if cd >0. 

Division is defined by the compound operation I/J = I - J -'for 0 l J. These 
operations could just as well be defined in terms of the functionals i, s introduced in 
(1.2); for example, (1.5) can be written 

(1.8) i(I -J) = i(I) )-s( J), s(I -J) = s(I) )-i(J). 

It will be shown below that the pair y*, e* arising from various classical error 
estimates can be used as an alternate coordinate system for the representation of 
intervals, and the rules of interval arithmetic can be formulated in terms of these 
coordinates, which leads to simple rules for certain operations. 

2. Error Functions and Optimal Error Bounds. Measurement of error of approxi- 
mate values will be made according to functions satisfying the following definition. 

Definition 2.1. A continuous function E(y, z) is a measure of the error of the 
approximation of the real number z by a real number y if 

(i)E(y, z)O0, 
(ii)E(z, z) 0,and 

(iii) E(y, z) is a strictly monotone increasing function of I y - z I for fixed z. 
Under these conditions, E(x, z) will be called an error function. 

Given an error function E and the knowledge that the point z belongs to an 
interval I, the concepts of optimal approximation and error bound can be devel- 
oped. 

Definition 2.2. The error of approximation of points z E I by a real number y is 
defined to be 

(2.1) e(y) = max{E(y, z) I z E I). 

Definition 2.3. A point y* E I is said to be optimal in I for the error function E if 

(2.2) e(y*) = min{e(y) I y e I) = min{max{E(y, z) I z E I} I y E I). 

THEOREM 2.1. The optimal point y* E I exists and is the unique solution y = y* in 
I = [a, b] of the equation 

(2.3) E(y, a) = E(y, b). 

Proof. If a = b, then y* = a = b; otherwise, the function 

(2.4) h(y) = E(y, a) - E(y, b) 
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is continuous, and h(a) < 0, h(b) > 0 by hypothesis. Thus, h(y*) = 0 for some 
y* E I, and y y* consequently satisfies (2.3). Now, suppose that y < y*. It follows 
that 

(2.5) E(y, b) > E(y*, b) = E(y*, a), 

since E is strictly monotone increasing in I y - b f, and if y > y*, then similarly 
(2.6) E(y, a) > E(y*, a) = E(y*, b), 

from which the optimality and uniqueness of y* follow. Q.E.D. 
Definition 2.4. The value - 

(2.7) ?* = E(y*) = E(y*, a) E(y*, b) 

obtained for optimal y* E I is called the optimal error bound on I for the error 
function E. It is the minimum of the maximum possible error on I. 

Thus, finding the optimal approximation y* to points of I and the corresponding 
minimum error bound e* simply requires the solution of the equation (2.3) and the 
subsequent evaluation of (2.7). In order to introduce given y*, E* as alternative 
coordinates for the representation of I, it is sufficient to note that the inverse 
functions 

(2.8) 1(e) y{y E(y*, y) -,y ay*} 0, 

(2.9) U(?)= {yIE(y*, y) = ,y y* Ea0, 

are single-valued and continuous by the hypotheses on the error function E, so that 
y* e* are optimal for the interval I for which 

(2.10) a = i(I) =l(e*), b = s(I) = u(e*), 

and thus I = [a, b] = [1(*), u(e*)] in standard format, which provides the transfor- 
mations from y* y*(I), E* = -*(I) to a = i(I), b = s(I) coordinates. 

3. Absolute Error. The simplest error function is the absolute error 

(3.1) E(y, z) =Iy-z I 

of the approximation of z by y. As is well known, the results of Section 2 lead to the 
optimal point and error bound 

(3.2) Y* =m(I) = (a + b)/2, e* = a(I) = (b -a)/2 

on I = [a, b], where m = m(I) is the midpoint of I, and a = a(I) is the halfwidth of 
I, the width of I being w(I) = b - a [2], [3]. The transformation from m, a 
coordinates to standard format is given by 

(3.3) a = i(I) = m -a, b-=s(I) = m + a. 

In this coordinate system, intervals are customarily denoted by 
(3.4) I m(I) + a(I). 

The rules for interval arithmetic are easily expressed in m, a coordinates. 
(i) Addition 

(3.5) m(I + J) = m(I) + m(J), a(I + J) = a(I) + a(J). 

(ii) Subtraction 

(3.6) m(I - J) m(I) - m(J), a(I -.J) = a(I) + a(J)- 



222 L. B. RALL 

(iii) Multiplication: From 

m,(I J) = m(I)m(J) - a(I)m(J), a, =I m(I) a(J) - a(I) a(J) 
m2(I J)= m(I)m(J) - m(I)a(J), a2 I a(I)m(J) - a(I)a(J) 

m3(1-J)= m(I)m(J) + a(I)a(J), a3 I |a(I)m(J) + m(I)a(J)l 
m4(I J)= m(I)m(J) - a(I)a(J), a4 a(I)m(J) - m(I)a(J) 

m5(I J)= m(I)m(J) + m(I)a(J), a5 = a(I)m(J) + a(I)a(J) l 
m6(I .J)= m(I)m(J) + a(I)m(J), a6 m(I)a(J) + a(I)a(J) . 

pick a pair mi, al for which 

(3.8) al = max{ta , a2, a3 , a4, a5, ,a6}. 

(iv) Reciprocation: For 0 M J, mM(J)2 - a( J)2 > 0, 

(3.9) m(J-l) = m(J)/ (m(J)2 - a( )2) 

a(J-1) = a(J)/ (m(J)2 - a( J)2), if m(J)2 > a( J)2. 

Remark 3.1. In m, a coordinates, addition and subtraction are one-component 
operations: m(I ? J) depends only on m(I), m(J), and a(I ? J) similarly is a 
function of a(I), a(J) only. Simplifications of this type will be seen below for 
multiplication and reciprocation. However, Ratschek [5] has proved that there are no 
coordinate systems for intervals in which both addition and multiplication are 
one-component operations. 

Remark 3.2. The rule for multiplication in midpoint-halfwidth coordinates looks 
complicated. However, it is comparable to (1.6), which requires the selection of a 
maximum and minimum value from four elements, while here only finding the 
largest of six nonnegative numbers is required. Furthermore, since a( I), a( J) > 0, 
an analysis of the signs of m(I), m(J) will eliminate some of the a, at once. 

The midpoint m(I) of I, at which the maximum bound for the absolute error is a 
minimum, is, of course, the arithmetic mean (average) of the endpoints a, b of I. 

4. Relative and Percentage Error. For positive intervals (a = i(I) > 0), a useful 
measure of error in many applications is the relative error of y as an approximation 
to z, for which the corresponding error function is 

(4.1) E(y, z) =] | z 

Note that this error function is asymmetric; in general, E(y, z) # E(z, y). Another 
commonly employed error function is the percentage error 

(4.2) P(y, z) = 100E(y, z) = 0 - 

z 

For each of these error functions, Eq. (2.3) gives 

(4.3) h(y) 2ab 

the harmonic point of the interval I= [a, b] as the optimal point, and the optimal 
error bounds 
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corresponding to (4.1) and (4.2), respectively. The quantity r(I) = (b - a)/(a + b) 
will be called the relative width of the interval I = [a, b]. The transformations from 
h, r coordinates back to the standard format are given by 

(4.5) a = ifI) = h(I )/ (I + r(I )), b = s(I ) = h(I )/ (I1-r(I )). 

Similar formulas can be obtained for the h, p coordinates simply by setting 
r(I) = p(I)/100 in (4.5). In these systems, one can write the interval I in the forms 

(4.6) I=- h(I) r.e r(I), I =h(I)+--p(I)%, 

respectively. Because of the simple relationship between p(I) and r(I), the rules for 
interval arithmetic will be given for the h, r coordinates only. 

(i) Addition 

(4.7) h(I ? 
J) (h(I) + h( J))2-(h(I)r(J) + h(J)r(I ))2 

h(I) + h(J) - (h(I)r( J)2 + h(J)r(I)2) 

r(I + J) - h(I)r(I) + h(J)r(J) -(h(I)r(I)r( J)2 + h( J)r(J)r(I )2) 

h(I) + h(J) -(h(I)r( J)2 + h(J)r(I)2) 

(ii) Subtraction is defined only for I - J positive, 

(h(I) - h( J))2 - (h(I)r(J) + h(J)r(I ))2 

h(I) - h(J) - (h(I)r(J)2 + h(J)r(I)2) 

h(I)r(I) + h(J)r(J) -(h(I)r(I)r(J)2 + h(J)r(J)r(I)2) 
r(I -J =)~^-~~-~~ -- 

h(I) - h-(J) -(h(I)r( J)2 + h(J)r(I )2) 

provided h(I) > h(J) + h(I)r(J)2 ? h(J)r(I)2. 
(iii) Multiplication 

(4.9) h(I .J) =- h()hJ r(I . J) r()?rJ 
I + r(I)r(J) 1 + r(I)r(J) 

(iv) Reciprocation 

(4.10) h(J-') - - r(J)2 r(J-') r(J). 
h(J) 

The formulas (4.7) and (4.8) for addition and subtraction are too unwieldy to be 
of practical importance; however (4.9) and (4.10) are simple and direct, and 
multiplication and hence division require no sorting. Of course, for positive intervals 
in the standard format, [a, b] [c, d [ac, bd] is also obtained directly. 

The optimal point h(I) here is the harmonic mean of the endpoints a, b of I. The 
restriction to positive intervals is just to make sure that 0 4 I; analogous formulas 
hold for negative intervals with b = s(I) < 0. 

5. Relative Precision and Approximate Relative Precision. Olver [4] defines y* to 
be an approximation toy with relative precision a, 

(5.1) y -Y* r.p. 0, a >0 , 

to mean that 

(5.2) y*e-a < y < y*e'a 
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Similarly, approximate relative precision , 

(5.3) y -y* a.r.p. T, 0 < T < 1 

for the approximation of y by y* means 

(5.4) (1 -)y* <y y*/ (1-) 

an interval relationship similar to (5.2). These recently introduced concepts lead to 
simple derivations of a priori error bounds for a number of important computational 
procedures [4]. The formulaton of the error functions corresponding to (5.1) and 
(5.3), and the derivation of optimal points and error bounds, can be made on the 
basis of the function 

(5.5) M(y, z)-max{ YJ, _ y, z > 0. 

Here again, only positive intervals will be considered. The results apply to negative 
intervals as well, with the obvious modifications. Examination of the function 
M(y, z) leads at once to the following conclusions. 

LEMMA 5.1. For y > 0 and fixed z > 0, M(y, z) is a monotone increasing function of 

ly -z I. 

Proof. This follows at once from the representation 

(5.6) M(Y9 z) 
= y2 + 

z2 
+ 

Iy2 
- z2 

2yz 

fory, z > 0. Q.E.D. 
The next proposition results from the same reasoning as in the proof of Theorem 

2.1. 

LEMMA 5.2. On the positive interval I = [a, b], the minimum p(I) of the maximum 
value of M(y, z) is attainedfory = y* satisfying 

(5.7) Y _ b 
a y 

that is, 

(5.8) y* g(I) ab, p(I) = ba. 

Definition 5.1. The point g(I) = ga- is called the geometric point of a positive 
interval I, and p(I) = fb7-a is the ratio of I. 

The following theorem is an immediate consequence of Definitions 2.1-2.4 and 
Lemmas 5.1-5.2. 

THEOREM 5.1. If f is a strictly monotone increasing function of x for x ! 1 such that 

f(1) = 0, then 

(5.9) E(y, z) = f(M(y, z)) 

is an error function fory, z > 0 with optimal point and error bound 

(5.10) y*- g(I), A* f(p(I)) 
on each positive interval I. 
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The conclusion of Theorem 5.1 applies immediately to relative precision, since 
(5.2) is equivalent to the error function 

(5.11) E(y, z) = ln(M(y, z)), 

for which the optimal error bound is 

(5.12) E* a(I) = ln(p(I)). 

Similarly, from (5.4), the error function corresponding to approximate relative 
precision is 

(5.13) E(y, z) = (M(y, z) - I)/M(y, z), 
which has the optimal value 

(5.14) (* = TI) = ( p(I- ) )/p(I) 

on the positive interval I, again at the geometric point y* = g( I). 
Thus, 

(5.15) p(I) = e 17) = I/(1-T(I)), 

so the rules for interval arithmetic in g(I), a(I) or g(I), T(I) coordinates come 
easily from the ones given below for the geometric point-ratio coordinates g = g(I), 
p = p(I). These lead to the representation 

(5.16) I = g(I) * p(I), 

for positive intervals ( W is a combination of . and X), and the inverse transforma- 
tions 

(5.17) a = i(I) = g(I)/p(I), b = s(I) g(I)p(I). 

The rules for interval arithmetic in g, p coordinates are: 
(i) Addition 

(5.18) g(I + J)2 = (g(I) + g( J))2 _ g(I)g(J) (p(I) 2 
p(I)p(-J) 

W ) 

p(I + J)2 
_ 

p(I)p(J) g(I)p(I) + g(J)p(J) 
g(I)p(J + g(J)p(I)~ 

(ii) Subtraction is defined only for I - J positive, 

(5.19) g(I _ J)2 = (g(I) _ g(J))2 _ g(I)g(J) (I)p(j) _ 1)2 
p(I)p(J)((IpJ-1) 

p(I - J)2 = p(I) 
(g(I)p(IM)pW( 

- 

g(J)) p( J) g(I) - g(J)p(I)p(J 

if g(I) - g(J)p(I)p(J) > 0. 

(iii) Multiplication 

(5.20) g(I . J) = g(I)g( J), p(I.J) = p(I)p(J). 

(iv) Reciprocation 

(5.21) g(J'1) = 1/g(J) = g( J)', p(J-') = p(J). 
Remark 5.1. In g, p coordinates, multiplication and reciprocation (and hence 

division) are one-component operations. 
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Remark 5.2. In the special case that p(I)= p(J), formulas (5.18) for addition 
become 

(5.22) g(I + J) = g(I) + g(J), p(I + J) = p(I) = p(J). 

Thus, addition is a single component operation in this case; furthermore, the second 
component is constant, as in reciprocation (5.21). As noted by Olver [4], in addition 
of numbers AI, A2,...,A,7, the maximum relative or approximate relative precision 
can be assigned to all and the result by (5.22). Furthermore, in evaluating the 
convergent of a continued fraction of the form 

(5.23) A, ?A2 ? ?A,,' 

the maximum relative or approximate relative precision of Al, A2' .,A,, can be 
assigned to the result by (5.21) and (5.22). 

Remark 5.3. The point g(I) = ab is, of course, the geometric mean of the 
endpoints of the positive interval I = [a, b]. It is interesting that the elementary 
mean values m(I), h(I), g(I) turn out to be optimal points for the absolute error, 
relative (or percentage) error, and relative (or approximate relative) precision, 
respectively, all of which are useful measures of error in various applications. 
Furthermore, the fundamental inequality between these means [1] gives 

(5.24) h(I) ? g(I) m(I), 

so that relative precision is a measure of error intermediate to relative and absolute 
error in a certain sense. 

Remark 5.4. The g, p coordinates for intervals are related to the midpoint-half- 
width coordinates logarithmically. For a positive interval I = [a, b], define ln(I) 
[ln(a), ln(b)]. Then, 

(5.25) ln(g(I)) = m(ln(I)), ln(p(I)) = a(ln(I)). 

There are a number of other relationships between the coordinate systems consid- 
ered in this paper, for example, 

(5.26) m(J-1) = I/h(J) = h(J)'1, a(J-1) = a(J)/g(J)2. 

In performing interval arithmetic, one should keep in mind the possibility of 
economy or convenience in using one coordinate system or another for the type of 
calculations actually being done, and the possibility of transformations between 
systems. 

6. Excess Width of A Priori Bounds. Suppose that I is a subinterval of J. The 
quantity 

(6.1) e(J, I) = w(J)-w(I), I c J, 

is called the excess width of J over I. If I is the smallest interval which contains the 
actual results for given input data, then one of course desires to produce an interval 
J as the result of computation which has excess width over I which is as small as 
possible. In some cases, intervals J obtained by a priori error estimates will be wider 
than those computed by interval arithmetic. For example, Olver [4] defines absolute 
precision to mean the same as absolute error as considered in Section 3, that is 

(6.2) a-a a.p. a C a + oa. 
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If b _ b a.p. /B, then Olver gives the formula 

(6.3) ab-abha.p. ajI + bIIa + a/3, 

which, in interval notation, defines the interval K with 

(6.4) m(K) m(I)m(J), 

a(K) m(I) I a(J) + |m(J) I a(I) + a(I)a(J). 

For positive intervals I, J, formulas (3.7)-(3.8) give the simple results 

(6.5) m(I J) = m(I)m(J) + a(I)a(J), 

a(I -J) =m(I)a(J) + a(I)m(J), 

so that the interval K predicted by (6.3)-(6.4) is too wide by the amount 

(6.6) e(K,I J) rc2a(I)a(J) 

in this case. 
Similarly, for relative precision, the formula 

(6.7) a + b )td?5r.p.In 

is given in [4]. In terms of g, p coordinates (Section 5), this defines the interval K for 
which 

(6.8) g(K) = g(I) + g(J), p(K) = g(I)P(I) + g(J)P(J) 
g(I)?+g(J) 

In standard format, one has 

(6.9) + g(I) P?g(J) I?g(I)P(I) + g(J)P(J)], 
from which (5.17) and (6.8) give the excess width of K to be 

(6.10) e(K, I + J) =_ g(j)g(j)()p(I) 
_ - ))2 (6.10 e(K I ?J) 

-p(I)p(J)(g(I)p(I) 
? g(J)p(J))' 

which is positive if p(I) #& p(J). It is worth noting that s(K) s(I J) from 
(6.3)-(6.4), and s(K) = s(I + J) in (6.8)-(6.9). Hence, the formulas of Olver give 
the correct upper limit of the interval containing the result. 
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